
Canonical Phase Diagrams:
Honoring the youthful John E. Morral
on reaching the venerable age of  65.

John W. Cahn
National Institute of Standards and 

Technology, MSEL, Gaithersburg, MD 
20899-8555 USA

TMS, San Francisco, February 14, 2005



Morallisms, ca. 1967

Do we have to do things in standard ways?

Why not explore phase diagram axes other than 
T or S, P or V, concentration or µ,

for phase diagrams?

Somewhat later, ca. 1980:

Why not find other ways to report and use diffusion coefficients?

This hen was and still is willing to learn from the egg.



Morallisms in Print
• “On Characterizing Stability Limits for Ternary Systems,” 

Acta Metall, 1972, 20, 1061.
– Stab. Lims. for Ternary Regular Systems, ibid. p. 1069.

• “Two-dimensional phase fraction charts,” Scripta Metall, 
1984, 18, 407. 

• “Constructing multicomponent phase-diagrams by 
overlapping ZPF lines,” Scripta Metall, 1986, 20, 889.

• “Phase-boundary, ZPF, and topological lines on phase 
diagrams,” Scripta M&M, 1991, 21, 1993. 

• “2-Dimensional sections of miscibility gaps-The rose 
geometry,” J. CHIM PHYS ET  PHYS-CHIM 
BIOLOGIQUE, 1993, 90, 421.

• “The square-root diffusivity,” Acta Metal, 1986, 34, 2201
• “Zigzag diffusion paths in multiphase diffusion couples,” 

Acta M&M 1994, 42, 3887



“On Characterizing Stability Limits for                    
Ternary Systems” 

JEM, Acta Metall, 1972, 20, 1061 (and 1069)
The molar free energy of a solution F and its various derivatives 
with respect to concentrations can be used instead of the 
concentrations as the axes of phase diagrams.  Such axes were 
explored by John Morral in this paper.  He found that when 
phase diagrams are plotted with second derivatives* of F as 
axes instead of with the usual temperature and concentration 
axes, all regular solutions phase diagrams are distorted into 
triangular pyramids on a universal canonical phase diagram, 
in which stability limits are depicted as a double cone. The 
cones marks the stability limit withs respect to spinodal
decomposition. A solution’s regular solution interaction 
parameters determines placement of each triangular pyramid 
phase diagram with respect to the double cone.
*Second derivs of F are related to the thermodynamic factor in D.



Canonical Stability Limits mapped 
unto a Ternary Phase Diagram

JEMorral, Acta Met 1972



The Hen’s Canonical Phase Diagrams
ABSTRACT  This talk will explore two other choices 
of thermodynamic functions as axes.  

Phase diagram plots using axes of chemical 
potentials instead of concentration, as suggested by 
Scatchard and later by Pelton, are useful, more so if 
carried further

Using derivatives of F with respect to 
concentration (Morral) and order parameters 
(Landau) as axes gives canonical phase diagrams 
and insight into complex ordering, such as for Cu-
Au, involving first-order phase transitions and more 
than one ordered phase. 

.



Scatchard Plots
G.Scatchard, The calculation of compositions of 
phases in equilibrium,  JAChS, 1940, 62, 2426.

• Let every one of the chemical potentials µi be an axis of 
an isothermal plot.

• Data for \mu for the N components give a N-1 
dimensional surface in a N-dimensional diagram.  

• The tangent to this surface is d{\mu}.  We can think of a 
{µ} vector.

• By the isothermal Gibbs-Duhem equation,
• Σi Ci d µi = 0;  or  {C}.d{µ} = 0,
• the components of the normal to this surface {C} is the 

composition.
• Phase equilibria are corners, edges, etc.  on such plots.



An isothermal binary solution example of a 
Scatchard Plot.
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α-β equilibrium, 
µi are equal.

Limiting slopes give 
equilibrium compositions. 
Discontinuity in slope gives 
two-phase composition gap. 

Curves are convex

d{µ} is tangent to them

{C} is ratio of components

d{µ}



An isothermal example of a 
Scatchard Plot for a ternary.

Surfaces depict single phases

d{µ} depicts the local tangent plane

{C} depicts composition

Edges depict two-phase coexistence

Corners depict three-phase coexistence
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β
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µ3
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Scatchard Plot data issues  
• Need µ for every species

– Some can be gotten directly from EMF, vapor pressure, etc.
– Knowing the concentration and using the Gibbs-Duhem equation gives 

us an independent estimate of the dµI,
– Or an opportunity for interpolating and extrapolating missing data
– Which is the basis of the Gibbs-Duhem integration for getting other µ

from a measured µ (Darken), and closely related to the Wulff
construction for crystal shapes (Cahn & Carter).

– Some µ can be gotten by differentiating FM, but how accurately do we 
know FM?

• Finding edges and corners and limiting slopes is surely more 
accurate than finding common tangents to and make better use of 
the data used to determine FM.

• Opportunities: 
– There are excellent methods for interpolation and extension whenever 

data are missing. 
– Ideas for methods for CALPHAD & para-equilibrium?



A generalization of Scatchard Plots.

• Gibbs-Duhem Eqn.
• Σi Ni dµi + SdT – VdP = 0
• Let axes of the plot be T, P (but only if pressure is 

varied), and the µi.
• Data for the system form hypersurfaces, fα(µi, T, P) = 0; 

a vector (µi, T, P).
• The normal to these surfaces gives ratios of the 

concentrations of the components, S, and V.
• Intersections (edges, corners, etc.) give equilibria among 

phases, and the limiting normals give not only the 
compositions, but also the entropies and volumes of the 
co-existing phases, and, of course, composition jumps, 
∆S and ∆V.



An example of a Scatchard Plot 
for a binary with T (at P const).

Surfaces depict single phases

the local tangent plane depicts (d{µ},dT}  

The normal depicts composition and S

Edges depict two-phase coexistence

Corners depict three-phase coexistence

α

β

γ

µ2

µ1

T



CALPHAD & Scatchard compared when 
sketchy phase diagram data are all we have.

• Scatchard
– The compositions of each phase in an 

equilibrium give the slopes of edges and 
phase surfaces.  How to connect them?

• CALPHAD



Given the composition at phase boundaries fixes the slopes of 
the corners in the {µ} space of an isothermal Scatchard Plot:

α-β
β-γ

?

Using a solution model for the β phase fixes their relative positions:

α

β There will be consistency 
checks on the solution 
models.

γ

Solution model in 
{µ} space



Too bad that Morral was an infant in 1940. 

Both John and F,R. Morral had chances to meet Scatchard. 

Scatchard remained active after his retirement and was a 
great help to us with the experimental techniques and data 
handling for Ron Heady’s thesis.



Canonical phase diagrams using 
higher derivatives of F

• Ternary example: Morall’s paper.
• Simpler examples: 
• Critical point and spinodal in a binary.
• Ordering 
• Series expansion of F in terms of composition c 

and order parameter η about a critical point.
– F – Fcrit = Σnm (1/n!m!)(∂n+mF / ∂cn∂Tm)c(c – ccrit)n (T-Tcrit)m

• Then let the (∂n+mF / ∂cn∂Tm)c be the axes.



Unmixing near a critical point:
A simple classical binary example

• Chem spinodal ---- (∂2 F/∂ c2) = 0   (1),
– Coherent spinodal ….. (∂2 F/∂ c2) + 2 Yη2 = 0

• Conditions for a chemical critical point, CP
– (1) and (∂3 F/∂ c3) = 0           (2).

Fccc

Fcc

Single Phase

unstable

T

C

Single Phase

CP

P



Given Fcc and Fccc; can we solve for 
c and T uniquely?

• Almost always; away from T=0 and c= 0 or 1.
• Example: Let F/RT = (Ω/RT) c(1-c) – {c log c –

(1-c) log (1-c)}.
• Fcc = -2 Ω/RT - 1/[c(1-c)] = 0
• Fccc = {1-2c}/[c(1-c)]2 = 0
• Solutions:  
• For critical point; c = ½ ; Ω/RT = - 2
• For coexistence near Tc; Fccc = Fcc2



Plot of F – Fc = a2(T,c)η2 + a4η4

a4>0
contour extrema
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Plot of F – Fc = a2(T,c)η2 + a4η4
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Additions to F – Fc = a2(T,c)η2 + a4η4

with a4 >0

• Linear: F – Fc = a1η +a2η2 + a4η4

– Eliminates (smears out) transition
• Cubic: F – Fc = a2(T,c)η2 + a3(T,c)η3+ a4η4

– First  order transition, except where a3 = 0

• Higher order: Nothing changes, if a4>0
• Negative a4.  Higher even order, e.g. a6>0:            

F – Fc = a2(T,c)η2 + a4η4 + a6η6

– Eliminates second order transition.



Adding a cubic term
Curve (a2 =f(a3) for which ∆ F = 0 is transition in a single component 
system;  it is the T0 in a binary or higher order system.
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Canonical phase diagram with a 
cubic term
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Corresponding phase diagram with a cubic term has a 
second order transition at a single critical point, first 
computed by Shockley.

This point is submerged (metastable) by a first-order 
congruent o-d transition when a_4 <0.



Multiphase critical point

All four phases, 
disordered fcc, A3B, 
AB, and AB3,  
become identical.

All latent heats and 
interfacial surface 
energies 0.



Phase diagram with a cubic term
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Corresponding phase diagram with a cubic term has a 
second order transition at a single critical point, first 
computed by Shockley.

This point is submerged (metastable) by a first-order 
congruent o-d transition when a_4 <0.



Phase diagram with a cubic term 
and with a4 <0

a2

T0

Metastable barrierless (spinodal) ordering is submerged 
(metastable) by a first-order congruent o-d transition when a4 <0.
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CVM Phase diagram

Metastable 
multicritical point

Latent heat ->0

∆ c -> 0

IPB σ ->0

Eutectoid



At metastable crit point, σ, the energy of the 
interphase interface 0

metastable crit point

Eutectoid 



R.J. Braun, J. Zhang, J.W. Cahn, G.B. McFadden, and 
A.A. Wheeler, Model phase diagrams for an  FCC alloy

. Crit pt is at a minimum T



. Crit. pt

. Crit. pt



Summary
• Not doing things in standard ways has been a big part of John 

Morral’s life. He has shown it is fun, instructive, and can give 
valuable new insights.

• In this talk I re-examined two non-standard ways of plotting phase 
equlibrium data, Scatchard’s and Morral’s. Both used as axes 
derivatives of free energies.

• Are Scatchard and Morral kindred souls?  Scatchard 1940 plots are 
based on profound insights, but were not adopted. Ditto for the 1962 
Morral plots.  Are they worth resurrecting after 65 years? 

• There may be some data handling advantages in this age of 
computers and sparse, often inaccurate data.

• Some are canonical and reveal general principles, e.g. the 
multiphase critical point in FCC.



Last slide



Corresponding phase diagram with 
cubic term

Bo Sundman, Suzana G. Fries and W. Alan Oates, A CALPHAD 
Assessment of the AU-Cu System using the Cluster Variation 
Method, Zeitschift Metallkunde 90 (1999) 267-273.
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